Building Energy and Emission Scenarios

How can we do this?

Lars Strupeit

Malé Declaration: Emission inventory preparation / scenarios /
atmospheric transport modelling and soil acidification workshop

UNEP RRCAP, Bangkok, Thailand. 28 January to 1 February 2008

the international institute for
industrial environmental economics 1
Lund University, Sweden



How can we foresee the future?

We can learn from historical trends

We can learn from other places

o things happening in some parts of the world, may happen
In other parts in a few years.

Technology outlooks

We have to make assumptions
o especially with regard to the macro environment
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Outline

= Economic development and energy demand
o GDP and electricity demand
o GDP and transport demand

= Energy prices, energy demand, and fuel mix

= Technology change
o Example: transport sector
o Example: power sector

= Policy intervention
= Models and tools
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Building energy and emission scenarios
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1 Economic development and energy demand

Economic growth is by far the most important driver
of energy demand

Key factors determining economic development
Population development

Productivity

Innovation and technology change

Policies

Trade

and many more...

O O O O O O
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Economic Growth in South Asia
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Economic Growth Scenarios

Figure 2.1 Real GDP per capita, purchasing power parity (PPP) basis
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Trends in global energy intensity

Index 1970 = 1
3,0

?

2,8

2,6

2.4

2,2

2,0

1,8

1,6
1,4

1.2+

1,04

1
i
L |
i
(/I |
(N
i

0,8

?

0.6

11
1
I

U=4 r T 7 7 ' I ' ' ' r T 7 ' ' I Tt ' ' ' L
1970 1975 1980 1985 1990 1995

Figure 1.5: Intensities of energy use and CO, emissions, 1970-2004.
Data Source: IEA data
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Key energy indicators for India

1980 1990 2000 2005
Total primary energy demand (Mtoe) 209 320 459 537
O1l demand (mb/d) 0.7 1.2 2.3 2.6
Coal demand (Mtce) 75 152 235 297
Gas demand (bem) 1.4 11.9 25.4 34.8
Biomass and waste (Mtoe) 116 133 149 158
Electricity output (TWh) 119 289 562 699

~ TPES/GDP (index, 2005=100) 163 142 120 100 >
Total primary energy demand per capita (toe) 0750 U308 0.45 0.49
CO, emissions per capita (tonne) 0.43 0.69 0.95 1.05
Oil imports (mb/d) 0.5 0.6 1.6 1.8
Electricity demand per capita (kWh) 174 341 553 639
(IEA, 2007)
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Changes in energy intensity

Figure 1.5: Primary Energy Intensity in the Reference Scenario
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Changes in energy intensity

Figure 1.15: Change in Primary Energy Intensity in the Reference
and Alternative Policy Scenarios, 2005-2030
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Economic development and energy demand

What does this mean? For example...

Average annual GDP growth rate + 6.0 %

Average annual change in energy intensity - 2.5 %

Average annual change in energy demand + 3.5 %
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Changes in energy intensity
Figure 11.15: World Stationary Final Fossil Fuel Demand and Real GDP
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Economic development and energy demand

In virtually all energy scenarios in the literature...

o economic growth outpaces the increase in energy
consumption, leading to substantial reductions in energy
intensities and efficiencies

Due to

o structural changes towards less material-intensive, more
knowledge-intensive products and services

o technology developments
o efforts into energy efficiency
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GDP and electricity demand

Figure 11.16: World Electricity Demand and Real GDP Per Capita
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GDP and electricity demand

Electricity/total energy
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Figure 4.18: Ratio of electricity to total primary energy in the US since 1900.
Source: EPRI, 2003.
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1.2 GDP and electricity demand growth
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1.2 Electricity and CO2-emissions
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Figure 1.2: Sources of global CO, emissions, 1970-2004 {only direct emissions by sector).

1 Including fuelwood at 10% net contribution. For large-scale biomass burning, averaged data for 1997-2002 are based on the Global Fire Emissions Database satellite
data (van der Werf ef al., 2003). Including decomposition and peat fires (Hooijer et al., 2006). Excluding fossil fuel fires.

21 Other domestic surface transport, non-energetic use of fuels, cement production and venting/flaring of gas from oil preduction.

3 Including aviation and marine transport.

Source: Adapted from Olivier et al,, 2005; 2006). (IPCC, 2007)
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share of power generation in total
CQO, emissions

1.2 Electricity and CO2-emissions

Figure 5.5: Share of Power Generation in World Energy-Related CO,
Emissions and in Primary Energy Demand, 1980-2030
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Energy demand vs. electricity demand

Total primary energy supply | Electricity production
Average annual growth rate Average annual growth
(1990-2002) rate (1990-2002)
Bangladesh 4.4 % 7.5 %
Bhutan
India 3.4 % 6.2 %
lran 2.4 % 7.5%
Maldives
Nepal 3.4 % 7.3 %
Pakistan 3.6 % 6.0 %
Sri Lanka 3.7% 6.7 %

(Worldbank, 2005)
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GDP and transport demand

= The motorization of transport is expected to grow
rapidly in the coming decades

= As incomes grow and the value of travelers” time
Increases, travelers are expected to choose faster
modes of transport

= Shifting from non-motorized to automotive, to air
and high speed-rail

= the higher the speed, the higher the energy
consumption
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GDP and vehicle ownership
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Income and vehicle ownership

The relationship between vehicle ownership and per-capita

income is highly non-linear. The income elasticity of vehicle

ownership starts low but increases rapidly over the range of
$3,000 to $10,000, when vehicle ownership increases twice
as fast as per-capita income. Europe and Japan were at this
stage in the 1960’s.

Many developing countries, especially in Asia, are currently
experiencing similar developments and will continue to do so
during the next two decades. When income levels increase to
the range of $10,000 to $20,000, vehicle ownership increases
only as fast as income.

At very high levels of income, vehicle ownership growth

decelerates and slowly approaches the saturation level. Most
of the OECD countries are at this stage now.
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Income and vehicle ownership

Figure 2.11 Relationship of income to vehicle ownership in Chennai, 1993
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Income and vehicle ownership

Figure 1. Vehicle Ownership and Per-Capita Income for USA, Germany, Japan, and
South Korea, with an [llustrative Gompertz Function, 1960-2002
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Income and vehicle ownership

Figure 2. Vehicle Ownership and Per-capita Income for South Korea, Brazil, China, and
India, with the Same Illustrative Gompertz Function, 1960-2002
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Income and vehicle ownership

Figure A.1 Stylized Auto Ownership Curve
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Other factors determining vehicle ownership

Population density & population distribution /
urbanization

o a higher proportion of urban population and greater
population density would encourage the availability and
use of public transport systems, and could reduce the
distances traveled by individuals and for goods
transportation

Income distribution

Availability of rail network

o A comprehensive rail network most likely decreases
vehicle saturation levels

Availability of road networks

o A comprehensive road network most likely increases
vehicle saturation levels
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Vehicle ownership and income distribution

Number of vehicles owned by

households of different incomes
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Country's population density and distribution (2002)
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Figure 10. Projected Growth for China and India. compared with Historical and Projected
Growth for USA, Japan. South Korea, Brazil, Mexico, and Spain.
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BUT: Are these trends replicable for
South Asia with the 2500 US$ car ???
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Transport demand scenarios

Figure 2.2 Personal transport activity by region
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Vehicle ownership scenarios

Figure 2.7 Reference case - Projected growth in personal motorized

vehicle ownership
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Vehicle ownership scenarios

Figure 2.8 Reference case - Projected growth in light duty vehicle

(LDV) ownership
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Vehicle ownership scenarios

Figure 2.9 Reference case - Projected growth in motorised two-wheeler

ownership
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2 Energy prices, energy demand, and fuel mix

Supply of fuel

[ 3

Income/economic
output

{

Demand for
energy service

——p-
Cost of energy
—
4
Price of Cost of energy
alternative fuels* service
$
Non-energy

costs* (capital,
maintenance etc)

1

Other factors
(climate, lifestyle,
geography etc)

Price of fuel*  |[@==mmmmmmmmmmeccec oo oo oo e

Energy efficiency

?

the international institute for
industrial environmental economics

Lund University, Sweden

(IEA, 2006)

38



Energy prices and fuel mix

Fuel mixes are strongly determined by the relative
fuel prices

o for example, higher oil and gas prices are making coal
more competitive as a fuel for baseload power
generation.

Other factors

o government policies on fuel diversification, climate
change and air pollution

o developments in technology
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Energy prices and fuel mix

Figure 6.3: Indicative Mid-Term Generating Costs of New Power Plants
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Changes in fuel consumption mix

FIGURE &.6 GLOBAL FINAL ENERGY SHARES BY FORM IN THREE CASES
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Fuel mix in IEA Energy Scenarios for 2030
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3 Technology change

Technology change is a major factor that
determines future emissions of SOx, NOx and PM

o Modern energy conversion technologies are cleaner and
more efficient

o End-of-pipe technology to clean flue gases from these
pollutants is commercially available
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3 Technology change

For energy and emission scenarios we need to model...

= the phase-out of old (polluting) technologies
o as part of the replacement cycle
o  through policy intervention

= the retrofit and upgrade of old (polluting) technologies
o especially power stations and industries

= the introduction of new (cleaner) technologies
o technology availability
o  price
o  policy support
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3.1 Power sector

=  When will old power plants be phased-out?

= When will old power plants be retrofitted? How
efficient and clean are they after a retrofit?

= When and how much new power generation
capacity will be phased-in?
= What will be the performance of new power

generation technologies with regard to air
emissions? How clean will they be?
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Age distribution of coal-fired capacity

Figure 4.9 P Age distribution of coal-fired capacity by size in India
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Age distribution of coal-fired capacity

Figure 4.5 P Age distribution of coal-fired capacity by size in China
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Age distribution of coal-fired capacity

Figure 4.4 P Age distribution of coal-fired capacity by size in the United States
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Age distribution of coal-fired capacity

Figure 4.8 P Age distribution of coal-fired capacity by size in the United Kingdom

2 20 000 B > 400 MW, units
“'E; B 200-400 MW, units
£ 15000-

g M 50-200 MW, units

S

E 10 000

=

£

5000
0 | ! | — ! - | ! !

5 o % o 5 N o © 5
Q:xqb c3:\"*4‘ Q}:\"’ﬁ c3:\‘:’3’ Q}:\“q’ c3:\"*0“ Q:\qq c;‘»@ QYLQQ

Nofe: No new plants in the 1995-2005 periods.

Source: IEA Clean Coal Centre, 2005b.
(IEA, 2006)

the international institute for
industrial environmental economics 49
Lund University, Sweden



Current capacity installed

Table 4.4 P Current capacity of natural gas and coal-fired power
plants world wide, 2003

Combined-cycle 351 PCC subcritical 970

Ncﬂur nl gn .S. mrb me ............. 225 ....... PCC Supemnhml ..................... ]38 :
é{e.c;l;q. CYCIe .................... 332 ....... PCC .U.I;r:a.- Supercrmml .................. ]? :
infernal combusfion engine 7 Fluidised bed combusfion subcrifical 17

Integrated gasification combined-cycle 1

Note: PCC — pulverised coal combustion. Supercritical plants are defined as those operating with
steam temperatures above 540 °C. Ultra-supercritical plants are supercritical pressure units operating
with temperatures above 580 °C.

Source: Natural gas-fired capacity from IEA, 2004b; coal-fired capacity from IEA Clean Coal Centre.
(IEA, 2006)
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Net electric efficiency (%)

Global average power plant efficiencies (1992 — 2003)
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Technology prospects for fossil-fuel
power ts for baseload capacity

Gas NGCC >60 400-500 0.032-0.036 0.035-0.045 0.045-0.05
s G e el
CoafiC | s | 1000 0035-004 0035-004 0035-004
T O T s
e N e i s

Note: Using 10% discou e. The natural gas price increases to USD 5/GJ in 2030 and USD 6.5/G)J
by 2050, USD 2/GlJ higher for decentralised fuel cells. The coal price is USD 2/GJ over the whole period.
Because fuel cells are a decentralised technology, transmission costs are reduced by up to USD 0.05/kWh
compared to technologies for centralised power plants. This has not been faken info account in this table.
The actual global range is wider as discount rates, invesiment cost and fuel prices vary.  (JEA, 2006)



The potential for CO2 emission reductions

Figure 4.3 P CO, emissions by type of plant®

5 1000
E I
-
1 I
2 800 e
g
~ 600
O
O
% 400 —
:
= 200 —
O
0 »
Conventional  Supercritical Ultra Integrated Natural gas
subcritical coal supercritical  gasification combined-
coal coal combined-cycle cycle
(IEA, 2006)

the international institute for
industrial environmental economics 53
Lund University, Sweden



Characteristics of power plants with
CO2 capture

Likely technologies
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Characteristics of power plants with
CO2 capture

Likely technologies
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Learning curve for photovoltaics

Figure 4.12 P Projected cost reductions for solar PV’
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Source: Hoffmann, 2001.

the international institute for
industrial environmental economics 56
Lund University, Sweden



Learning curve for windpower

A US$kWh

Inland site
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Figure 4.12: Development of wind-generation costs based on Danish experience
since 1985 with variations shown due to land surface and terrain variations (as
indicated by roughness indicator classes which equal 0 for open waterand up fo 3
for rugged terrain).

Source: Morthorst, 2004.
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Development of wind turbine size

I
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Source: German Wind Energy Institute (DEWI), 2004.
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Learning curve: PV, wind, bioethanol
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Figure 4.11: Investment costs and penetration rates for PV, wind and bioethanol
systems showing cost reductions of 20% due to technological development and
learning experience for every doubling of capacity once the technology has matured.

Source: Johansson et al., 2004.



3.2 Transport sector

When will old vehicles disappear from the market?

When will new vehicle technologies enter the
markets?

What will be the performance of new vehicle

technologies with regard to air emissions? How
clean will they be?
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3.2 Vehicle age distribution
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Vehicle age distribution
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Figure: Age distribution of motor vehicles in Singapore as of 31 December 2007
(Land Transport Authority, 2008)
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GDP and average vehicle age

Figure 2: The correlation between average age of vehicles in a country and
GDP per capita (EU-15), 1998
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Proportion of vehicles serappediyr.

Modelling the scrapping of old vehicles
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mission standards for

Country
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Notes: ltalics — under discussion; a — gasoline; b — Diesel; ¢ — Entire country; d — Delhi, Chennai, Mumbai, Kolkata,
Bangalore, Hydrabad, Agra, Surat, Pune, Kanpur, Ahmedabad, Sholapur, Lucknow; Other cities in India are in Euro
2: e — Beijing and Guangzhou (as of 01 September 2006) have adopted Euro 3 standards; Shanghai has requested
the approval of the State Council for implementation of Euro 3; f — Euro 4 for gasoline vehicles and California ULEV
standards for diesel vehicles; g — As per government regulation 1295-11 from Ministry of Environment and MNatural
Resources hitp://'www.cea. lk/acts/req1295-11.pdf; h — Gasoline vehicles under consideration
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Trends in fuel intensity of light-duty vehicles

Figure 5.2 P Average fuel intensity of the light-duty vehicle stock

Litres per 100 km
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Points to consider

= The level of vehicle usage / mileage per year may
differ significantly with different vehicle age groups

o OECD: typically the younger the vehicle, the higher the
annual mileage

o What about South Asia?

= The expected level of policy enforcement of
emission standards and other policies for emission
control will always be a critical factor when
modeling future emission factors of vehicle fleets
o What about South Asia?
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Pathways towards cost-competitive
transport technologies

Technologies 2010 2020 2030 2040 2050

Transport -
vehicules

Vehicle fuel economy improvements
(all existing modes and vehicle types)

Hybrid vehicles

Ethanol flex fuel vehicles

Hydrogen fuel cell vehicles

Non-engine technologies

Transport - fuels

I

Biodiesel (from vegetable oil)

Biodiesel (biomass to liquids)

Ethanol (grain/starch)

Ethanol (sugar

Ethanol (lignocellulosic)

Hydrogen

the stage when the technology is cost-competitive without specific CO; reduction incentives

the R&D stage (IEA, 2006)



Transport emission scenarios (OECD)

Figure 2.15 OECD regions: Transport-related Nitrogen Oxide (NOx)

emissions by mode
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Source: Sustainable Mobility Project calculations.




Transport emission scenarios (OECD)

Figure 2.18 OECD regions: Transport-related Particulate Matter (PM-10)

emissions by mode
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Transport emission scenarios (non-OECD)

Figure 2.23 Non-OECD regions: Transport-related Particulate Matter

(PM-10) emissions by mode
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Transport emission scenarios (non-OECD)

Figure 2.20 Non-OECD regions: Transport-related Nitrogen Oxide (NOXx)

emissions by mode
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4 Policy intervention

Market developments will lead to some emission
reductions per service unit in the future
o New technologies are more energy-efficient and cleaner

o BUT: the expected growth in energy demand / transport
volume will outweigh these efficiency gains

Additional technology (“end-of-pipe”) and cleaner
fuels will be required to cut NOx, SOx, PM
emissions

o Policy intervention will be required to implement this, as it
is unlikely that “polluters” will install “filters™ on their own
initiative
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Policy instrument for air pollution
prevention and control
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4 Policy intervention

The impact on emissions of some policy
Interventions are relatively easy to model...
o Fuel quality standards

o Emission standards

o Banning of certain technologies

o Mandatory technology standards

The impact of other type of policy interventions are
harder to forecast, e.g.

o Economic instruments (fuel taxes, sulphur taxes, etc.)

o Informative instruments

o Voluntary agreements
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4 Policy intervention

It is not always clear how existing policies will be
Implemented in the future

Often a degree of judgment is required In
translating stated policies into formal assumptions

for modelling purposes.

o this requests especially to make assumptions about
policy enforcement
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The importance of effective policy enforcement

Figure 4.13 Police enforcement intensity and its effectiveness
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The timing of policy intervention (NOx)

Figure 4.3 Non-OECD regions: Nitrogen Oxide (NOx) emissions by year

depending on the time lag in implementing developed world
emissions standards
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The timing of policy intervention (PM10)

Figure 4.4 Non-OECD regions: Particulate Matter (PM-10) emissions by

year depending on the time lag in implementing developed
world emissions standards
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The timing of policy intervention (CO)

Figure 4.1 Non-OECD regions: Carbon Monoxide (CO) emissions by year

depending on the time lag in implementing developed world
emissions standards
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5 Models and tools

O

O

@)

Some established energy and emission models

the TREMOVE transport model

the TIMER energy demand and supply and emission model
the Long-range Energy Alternatives Planning tool (LEAP)
the MARKAL energy-economic-environmental model

GAINS - a model about Greenhouse Gas and Air Pollution
Interactions and Synergies

and many more....
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5 IEA World Energy Model (WEM)

Figure C.1: World Energy Model Overview
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5 IEA World Energy Model (WEM)

Figure C.3: Structure of the Transport Demand Module
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5 IEA World Energy Model (WEM)

Figure C.4: Structure of the Residential and Services Sectors Demand Modules
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5 IEA World Energy Model (WEM)

Figure C.5: Structure of the Power Generation Module
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5 IEA World Energy Model (WEM)

Figure C.6: Mehtod of Approach for the Renewables Module
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5 IEA World Energy Model (WEM)

Figure C.7: Structure of Oil Supply Module
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ADDITIONAL SLIDES
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Market exchange rates vs
purchasing power parities

1995US$/capita Ratio ppp/MER

Figure 3.4: Regional GDP per person, expressed in MER and PPP on the basis of World Bank dala aggregated to 17 global regions.

Mote: The left y-axis and columns compare absolute data, while the right y-axis and line graph compare the ratio between PPP and MER data.
EECCA = countries of Eastern Europe, the Caucasus and Central Asia.

Source: Van Vuuren and Affsen, 2006.
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What are emission scenarios?

A plausible quantitative
description of how emissions in Economic

the future may develop, based P
on a coherent and internally ot
consistent set of assumptions
(“scenario logic”) about key
relationships and driving forces.

> Regional

Emission scenarios are neither
predictions nor forecasts.

(adapted from IPCC)
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General approaches for emission scenarios

m SOclo-economic

O

@)

correlate emissions with socio-economic time series,
such as GDP development, without accounting in detalil
for technological change

top-down approach

= technology based

O

@)

considers explicitly technological change

emission factor approach is widely used, mainly due to
the fact that technological change became a prevailing
parameter

bottom-up approach, can be rather detailed and resource-
Intensive
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Soclio-economic, top-down approach

SIC ratio kgS per tC

Ratio of sulphur to carbon emissions (in kg per
ton C) as a function of GDP per capita

0 I
1000

GDP/capita

19903

Source: Gribler (1998)
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100000

Peak of sulphur to
carbon emissions for
early industrializing
countries (UK, US,
Germany) at around
10,000 $/capita

Later industrializing
countries experiences
the peak at lower
Income levels, e.g.
Japan at 6,000 $/capita
and Korea at 3,000
$/capita
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Technology-based, bottom-up approach

Emission
. factors
Technical /
measures
Activity
Volume / rates \
measures T
T Emissions

Social, / Scenarios
economic,

demographic
parameters
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Technology-based, bottom-up approach

Emission
. factors
Technical /
measures
Activity
Volume / rates \
measures o
T Emissions

Social, / Scenarios
economic,

demographic
parameters
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The fundamental formula

F: process level
emission factors

P: activity share or
penetration rate
of a technology
within a sector

K: technology type

Source: EEA

the international institute for
industrial environmental economics 05
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N
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Process level

Activity rate, e.g.

- electricity consumption
(kWh)

- transport volume
(Pkm / tkm)

- steel production (tons)

emission factor, e.g.

- Uso2/ KWhy,

1€

= gNOX / tkm

- gSOZ / tor]steel

\
E=AX

$ )

J

Y

Sectoral
emission factor

Activity shares or
penetration rates of a
technology (k) within a
sector

» eventually
determined by the
behaviour of people

> legislative
requirements

» technology
acceptance

> etc.
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The fundamental formula

Data sources for emission inventories (PAST)

national statistics

\

E:Ax

measurements

n

Lund U

- national statistics
- expert judgements

\/

(F % B)

the international institute for
industrial environmental economics
und University, Sweden

E: emissions
A activity rate

F: process level
emission factors

P: activity share or
penetration rate
of a technology
within a sector

K: technology type
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The fundamental formula

Data sources for emission inventories (PAST)

- national statistics

national statistics measurements

- expert judgements

/

E: emissi
E = sz (F X B) ke

F: process level
emission factors

scenarios investigation investigation

- financial economic
basic assumptions

Data sources for emission
projections / scenarios (FUTURE)

projections

the international institute for
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economic technological | | - technological P: activity share or

penetration rate
of a technology
within a sector

- behaviour K: technology type
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Key assumptions & data quality

Some aspects of the future are relatively easy to

predict

o e.g.a 20 year old consumer of 2025 is already born

o economic growth can be derived from the experience of
other comparable economies in the past

o long planning and investment horizons in the energy

sector make this sector transform at slow rates

In other fields, uncertainty is much higher

@)

O

@)

political stability and overall policy directions
energy and world oil prices
technological innovation
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Emission scenarios...

...are an important tool to design and assess
emission reduction strategies, which aim at
achieving given emission reduction targets in the
future

...help to evaluate alternative abatement options to
achieve these targets within given scenarios of
societal trends

...help to allocate emission abatement measures in
a temporal and spatial frame and to assess the
future efficiency of a large variety of measures
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The link between inventories and
projections / scenarios

Each emission projection
must be based on an

eX|St|ng emISSIOH |nven' \ Data sources for emission inventories (PAST)

| national StatIStICS | | measurements |

- national statistics

tory as a starting point.

- expert judgements

/

E= AXZ(F x P)

L/

/

economic technological
scenarios investigation

Data sources for emission
projections / scenarios (FUTURE)

- technological
- financial economic

- behaviour

investigation

basic assumptions

projections
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The link between inventories and

projections / scenarios

Each emission projection

existing emission inven-

Data sources for emission inventories (PAST)

must be based on an

tory as a starting point.

| national StatIStICS | | measurements |

- national statistics

The main difference
between an emission
Inventory and an
emission projection /
scenario is the time
reference.
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E= sz

- expert judgements

/

(F xP)

L/ /

economic
scenarios

technological
investigation

- technological

Data sources for emission

projections / scenarios (FUTURE)

- financial economic

- behaviour

investigation

basic assumptions

projections
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There are many driving forces
behind future emissions...

Population
Economic and ? ;f'ggmlec"t\\ consumpton paterns

development

SOCIaI development \A>q Urbanisation r——ﬂ EnergyAge ‘1\ Energy
i / | / - supply
Energy e Al \\

duc

/ /' Energy Public
Industry prices _~ awareness

TeChnOIOgy structure / International /\

/ trade —
/ \ Policies \ Air emissions &

Ag I’I CU Itu I‘e an d Agrilgl:]gl_lljgeand ?t 1 Tll —> air quality
land-use

cooperation
Policies

Data collection and modeling of causal interrelations
IS a big task!
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